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Abstract. We consider the surface critical behaviour of diagonally layered Ising models on
the square lattice where the inter-layer couplings follow some aperiodic sequence. The surface
magnetization is analytically evaluated from a simple formula derived by the diagonal transfer
matrix method, while the surface spin–spin correlations are obtained numerically by a recursion
method, based on the star–triangle transformation. The surface critical behaviour of different
aperiodic Ising models is found in accordance with the corresponding relevance–irrelevance
criterion. For marginal sequences the critical exponents are continuously varying with the
strength of aperiodicity and generally the systems follow anisotropic scaling at the critical point.

1. Introduction

The discovery of quasi-crystals [1] has stimulated intensive research to understand their
structure and physical properties (for recent reviews see [2–6]). Theoretically a challenging
problem is to determine the critical properties of such quasiperiodic or more generally
aperiodic structures. After a series of numerical [7–13] and analytical [14–21] studies on
specific models Luck has proposed a relevance–irrelevance criterion [22]. According to
this criterion, which is a generalization of the Harris criterion for random magnets [23],
the inhomogeneity is irrelevant (relevant) if the fluctuating energy in the scale of the bulk
correlation length is smaller (greater) than the excess thermal energy. In layered systems
the above criterion is connected to the sign of the cross-over exponent

φ = 1 + ν(ω − 1) (1)

which is expressed in terms of the correlation length exponentν of the unperturbed system
and the wandering exponent of the sequenceω [24].

Most of the studies about the critical properties of aperiodic systems are restricted to the
quantum Ising chain with aperiodic couplings [22, 25–34], which is equivalent to the two-
dimensional classical, layered Ising model in the extreme anisotropic limit [35]. According
to (1) for this model withν = 1 sequences with bounded (unbounded) fluctuations represent
irrelevant (relevant) perturbations. The analytical and numerical results obtained on different
physical quantities (specific heat, surface and bulk magnetization, local energy density, etc)
of different aperiodic Ising quantum chains are consistent with the prediction of the Luck
criterion. For marginal sequences non-universal critical behaviour was found [30, 31], even
if the aperiodic perturbation was of radial symmetry [34]. We note also some related studies
on hierarchical Ising models [36].
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In the present paper we study the surface magnetization and the surface spin–spin
correlations of aperiodic Ising models. In contrast to previous investigations we consider
here the classical version of the model with a layered aperiodicity in the diagonal direction
and the critical properties are studied on the(1, 1) surface of a square lattice. We use
two methods of investigation. The surface magnetization is calculated analytically with
the diagonal transfer matrix method [37–39], whereas both the surface magnetization and
surface correlations are numerically studied by a recursion method based on the star–triangle
transformation. This latter method has also been used to study layered triangular systems.
We note that some preliminary results of our investigations have already been announced
in a letter [30].

The structure of the paper is the following. In sections 2 and 3 we present the diagonal
transfer matrix method and the star–triangle recursion method, respectively. Results on
different aperiodic Ising models are given in section 4. A discussion is contained in section 5,
while details of the calculation are presented in the appendix.

2. Surface magnetization by the transfer matrix method

Let us consider an Ising model on the square lattice with a diagonally layered structure,
where the nearest neighbour couplings in theith layer from the surface are given by
Ji = KikBT (see figure 1(a)). We are interested in the magnetization at the(1, 1) surface,
which is calculated in the transfer matrix formalism [37–39]. Denoting by〈0| and 〈1| the
ground state and the first excited state of theT diagonal transfer matrix, respectively, the
surface magnetization is given by the matrix element of the surface spin-flip operatorσx

1 ,

Figure 1. (a) Diagonally layered square lattice (full line) and the corresponding triangular lattice
with broken vertical lines. For the square lattice the vertical couplings are zeroKi = 0. (b)
Portion of the lattice contained in the square of the diagonal transfer matrix.
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as

ms = 〈0|σx
1 |1〉.

Working with free boundary conditionsT is different in odd and even sites, therefore we
considerT 2, which is given for the inhomogeneous model as

(T 2)µ,µ = 2N
N−1∏
i=1

cosh[K2i−1(µi + µi) + K2i (µi+1 + µi+1)] cosh[K2N−1(µN + µN)] (2)

and depends on the configurations of theµi = ±1 and µi ± 1 spins, i = 1, 2, . . . , N

(figure 1(b)).
To determine the eigenvectors ofT 2 we make use of the fact thatT 2 and the linear

operator

H = −
N−1∑
i=1

λiσ
z
i σ z

i+1 −
N∑

i=1

hiσ
x
i (3)

commute:

[T 2, H] = 0 (4a)

if the couplings of the inhomogeneous quantum Ising chain in (3) satisfy the relations

hi

C2i−2

C2i

= hi+1
C2i+1

C2i−1
(4b)

and

λi = hiS2iS2i−1
C2i−2

C2i

. (4c)

Here we used the abbreviations sinh 2Ki ≡ Si , cosh 2Ki ≡ Ci andC0 = 1. Derivation of
(4a–c) is shown in the appendix. According to (4a) the eigenvectors ofT 2 andH are the
same, therefore we evaluate the matrix element of the surface of magnetization〈0|σx

1 |1〉 for
the inhomogeneous quantum Ising chain. Using a free fermionic representation ofH [40]
one can show [41] that

ms = 8s(1) (5)

and the8s vector is determined by the equation(A + B)8s = 0, where

A + B =


h1 λ1

h2 λ2

h3 λ3

. . .

. . .

 . (6)

From the normalization condition
∑

i 8
2
s (i) = 1 one obtains for the surface magnetization

ms =
[

1 +
∞∑
i=1

i∏
j=1

(
hj

λj

)2 ]−1/2

=
[

1 +
∞∑
i=1

i∏
j=1

S−2
j

]−1/2

(7)

where in the last equation we have used (4b) and (4c). Analysing the formula in (7)
we can say that the magnetization on the(1, 1) surface of a diagonally layered Ising
model is formally the same as that of a quantum Ising chain with inhomogeneous couplings
λi = sinh 2Ki and in uniform transverse fieldhi = 1 [41]. We note that for the homogeneous
Ising model (7) gives Peschel’s result [42]:ms = (1 − sinh−2 2K)−1/2.
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3. Recursion method

The Ising model on the triangular lattice is invariant under the star–triangle transformation
[43] (STT), which makes the exact solution of the model on this lattice relatively simple
[44]. Also, an exact renormalization group transformation for the triangular Ising model
is based on the repeated use of the STT [45]. For a semi-infinite Ising model the STT
has been used by Hilhorst and van Leeuwen [46] and by others [47, 48] to construct an
iterative procedure to calculate the surface magnetization and the surface correlations in
the triangular Ising model. The method can be succesfully used for layered systems in
which the couplings are the same within one layer. We note that the square lattice can be
considered as a special case of the triangular lattice with vanishing couplings across the
diagonals (figure 1(a)). In the following we briefly recapitulate the basic results of the
recursion method.

Let us consider a layered Ising model on a semi-infinite triangular lattice with vertical
couplings parallel to the surfaceKi , i = 1

2, 3
2, . . . and with diagonal couplingsKi ,

i = 1, 2, . . . (figure 1(a)). The STT maps the triangular lattice onto a hexagonal lattice
which is in turn equivalent to a new triangular lattice. Iterating this mapping a sequence of
triangular Ising models is generated (n = 0, 1, 2, . . .) with couplingsKi(n) andKi(n) from
the original model withn = 0. The surface magnetizationms(n) and the surface spin–spin
correlation functiongs(l, n) = 〈σ1,lσ1,0〉 − 〈σ1〉2 transform as [46]

ms(n) = {1 − exp[−4K1/2(n + 1)]}1/2ms(n + 1) (8a)

gs(l, n) = 1
4{1 − exp[−4K1/2(n + 1)]}[gs(l + 1, n + 1)

+2gs(l, n + 1) + gs(l − 1, n + 1)]. (8b)

Making use of the boundary conditiongs(0, n) = 1 − m2
s (n) one obtains for the original

model withms = ms(0) andgs(l) = gs(l, 0) [46]

ms = lim
n→∞[f (n)]1/2ms(n)

g(l) =
∞∑

n=1

4−n l

n

(
2n

n + l

)
f (n)[1 − m2

s (n)]

f (n) =
n∏

j=1

{1 − exp[−4K1/2(n + 1)]}.

(9)

These relations are exact and can be used to iterate on a computer for any type of
distribution of the couplings in the original layered model. In this way calculating the surface
magnetization one can numerically determine theTc critical point and theβs critical exponent
of the surface magnetization of the model fromms(t) ∼ tβs as t = (Tc − T )/Tc → 0. For
the square lattice withKi(0) = 0 these results should be compared with the analytical
expression in (7).

To obtain analytical results by the recursion method one should analyse the asymptotic
behaviour ofX(n) = exp[−4K1/2(n)], since according to numerical observationsX(n) is
smoothly varying withn � 1 [48]. Inserting the asymptotic solution ofX(n) into (9) one
obtains in the continuum approximation:

ms = [f (n0)]
1/2 exp

[
− 1

2

∫ ∞

n0

X(n) dn

]
(10)

and

gs(l) =
∞∑
n=l

l

n3/2

1√
n

exp(−l2/n)[f (n) − f (∞)] (11)
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wheren0 is a finite cut-off, on which the critical exponents do not depend. According to
(10) the surface magnetization is non-zero if the integral

∫ ∞
n0

X(n) dn is convergent, thus
X(n) goes to zero faster than 1/n, asn tends to infinity.

The asymptotic behaviour ofX(n) has been calculated exactly at the critical point of
the homogeneous model and for models with smoothly varying couplings at the surface
[46–48], but there are no exact results available onX(n) outside the critical point. For the
homogeneous, critical Ising model [46]X(n) ' 1/2n, thusms(t = 0) = 0, f (n) ∼ n−1/2

and the surface correlations from (11) decay asgs(l) ∼ l−η‖ with η‖ = 1. For general
inhomogeneous models the decay exponent follows from the asymptotic behaviour:

lim
n→∞ 2nX(n) = η‖. (12)

In numerical calculations it is more accurate to determine the decay exponent from (12), than
to investigate the magnetization exponentβs from the behaviour of the surface magnetization
outside the critical point.

4. Results on aperiodic models

Although one can study general, triangular Ising models by the recursion method, here we
restrict ourselves to the(1, 1) surface of diagonally layered square models. In this way we
reduce the space of parameters withKi = 0; furthermore we make use of the analytical
expression on the surface magnetization in (7).

The criticality condition for layered inhomogeneous Ising models [49] is expressed in
terms of the variableSi = sinh 2Ki as

lim
L→∞

1

L

L∑
i=1

logSi = 0. (13)

Here we study two-valued sequences of the couplings and use the parametrizationSi = Srfi ,
wherefi takes the values 0 or 1 according to an aperiodic sequence. The homogeneous
model is described byr = 1. The fluctuation of the couplings in a domain of sizeL is
characterized by the cumulated deviation from the average valueS as [50]

1(S) =
L∑

i=1

(Si − S) ≈ δLωF

(
ln L

ln 31

)
. (14)

Hereδ = S(r − 1) is the amplitude of the modulation,ω is the wandering exponent, which
is expressed by the leading eigenvalues of the substitutional matrix [24]ω = ln |32|/ ln 31,
andF(x) is a fractal function of its argument with period unity. From the transformation law
of δ under scaling one can obtain the crossover exponentφ [25] in (1) and the corresponding
relevance–irrelevance criterion as described in the introduction. The aperiodic sequences
we consider in the following represent different types of perturbation according to this
relevance–irrelevance criterion.

4.1. Irrelevant perturbation: Thue–Morse sequence

The binary Thue–Morse sequence [51] is generated through the substitution 0→ 01 and
1 → 10, so that one obtains after four steps:

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0.

This sequence represents an irrelevant perturbation, since32 = 0 andω = −∞.
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The surface magnetization can be obtained from (7) using the corresponding result for
the Thue–Morse quantum Ising chain in [27]:

ms = 2t1/2

r1/2 + r−1/2

[
1 + 1

4

(
r − 1

r + 1

)2

t + O(t2)

]
(15)

where the critical point is atSc = r−1/2 and t = 1 − (Sc/S)2. The surface magnetization
exponentβs = 1

2 takes the value for homogeneous Ising systems. A similar conclusion can
be obtained from a study of surface critical correlations. According to numerical results the
relation in (12) limn→∞ 2nX(n) = η‖ = 1 is satisfied with an accuracy of 10−5. Thus the
decay exponent also takes the value for homogeneous Ising systems in two dimensions and
the perturbation is indeed irrelevant as expected from scaling.

4.2. Relevant perturbation: Rudin–Shapiro sequence

The Rudin–Shapiro sequence [51] is generated by the two-digit substitution 00→ 0001,
01 → 0010, 10→ 1101 and 11→ 1110, thus one obtains after three substitutions:

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1.

The wandering exponent of the sequence isω = 1
2, thus according to (1) this type of

perturbation is relevant for the Ising model. The critical point from (13) is given by
Sc = r−1/2 as for the Thue–Morse model. The surface magnetization is again obtained
from (7) using the known results about the corresponding Ising quantum chain in [28].
The surface magnetization behaves differently forr < 1 and r > 1. For r < 1, when
the couplings at the surface are locally stronger than the average, the surface stays ordered
at the critical point and the surface phase transition is of first order. The critical surface
magnetization is given by [28]

ms,c = 1 − r√
1 − r + r2

r 6 1. (16)

In the other regime,r > 1, the couplings are locally weaker at the surface than in the bulk
and the surface magnetization behaves anomalously; it has an essential singularity at the
critical point:

ms ∼ exp[−constant(r − 1)2t−1] r > 1. (17)

According to numerical results the decay of critical surface correlations is also anomalous.
The quantity limn→∞ 2nX(n) → ∞, thus according to (12) at the critical point the surface
correlations decay faster than any power andgs(l) has a stretched exponential dependence
on l.

4.3. Marginal perturbations

4.3.1. Fredholm sequence.The Fredholm sequence [51] is generated through substitution
of the three lettersA, B andC asA → AB, B → BC, C → CC and we associatefi = 0
to the lettersA and C and fi = 1 to B. Starting with a letterA we get for thefi series
after four substitutions:

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0.

This type of perturbation is localized to the surface and there is no change in the critical
temperature, thusSc = 1. The sequence is marginal, since the corresponding wandering
exponentω = 0. To evaluate the formula in (7) for the surface magnetization we use [33].
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For r >
√

2 the surface transition is of first order, the critical surface magnetization is given
by

ms,c =
√

r2 − 2

2r2 − 3
r >

√
2. (18)

In the other regimer <
√

2 the surface transition is of second order and the corresponding
surface magnetization exponent is a continuous function of the parameterr:

βs = 1

2
− ln r

ln 2
r 6

√
2. (19)

Using the recursion method we have determined the decay exponent of suface correlations
from (12), which is shown in figure 2 forr 6

√
2. Comparingη‖(r) with the surface

magnetization exponentβs(r) in (19) we can say that the surface scaling law [52]

η‖ = 2βs/ν (20)

is satisfied forr 6
√

2.

Figure 2. Decay exponent of critical surface spin–spin correlations for the Fredholm Ising
model.

4.3.2. Period-doubling sequence.The period-doubling sequence follows from the
substitution [51] 1→ 10 and 0→ 11, so that starting with a 1 after four steps we have

1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1.

The critical temperature from (13) isSc = r−2/3; furthermore the sequence is marginal since
ω = 0. The critical exponent of the surface magnetization can be analytically determined
using (7) and the corresponding result for the Ising quantum chain in [27]:

βs = ln[(1 + r2/3)(1 + r−2/3)]

4 ln 2
. (21)

As seen from equation (21),βs(r) is continuously varying with the parameterr. Furthermore
it is the same at both ends of the chain. This is a consequence of the fact that omitting the
last digit the period-doubling sequence is symmetric.
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Figure 3. The quantity 2nX(n) as a function of the logarithm of the iterations for the period-
doubling Ising model withr = 2. The decay exponentη‖ = 1 in (12) is approached through
log-periodic oscillations.

Next we calculate the decay exponent of critical correlations by the recursion method.
In contrast to the surface magnetization exponent the decay exponent is found to beη‖ = 1,
independently of the inhomogeneity parameterr. In figure 3 we show forr = 2 the
quantity 2nX(n) as a function of the logarithm of the iterations. Its limiting value as
n → ∞ gives the decay exponent according to (12). The log-periodic oscillations for large
n are a consequence of discrete scaling, which can be observed in other quantities as well
(see (14)). We note that the same value of the decay exponent is found on the right boundary
of the system.

Comparing the surface magnetization exponent in (21) and the decay exponentη‖ = 1
we can say that the surface scaling law in (20) does not satisfy. We shall come back to
clear this point in section 5.

4.3.3. Paper-folding sequence.The paper-folding sequence [51] is obtained by recurrent
folding of a sheet of paper, right over left. After unfolding one obtains a series of up- (1)
and down-folds (0). The same sequence can be generated using the two-letter substitutions
00 → 1000, 01 → 1001, 10 → 1100 and 11→ 1101. Starting with 11 after three
substitutions the sequence is given by

1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1.

This sequence is also marginal, sinceω = 0; furthermore the critical point from (13) is
Sc = r−1/2.

Again the surface magnetization exponent is analytically known from (7) and using the
result for the corresponding quantum Ising chain in [31]. At the left surface

βs = ln(1 + r−1)

2 ln 2
(22)

whereas at the right boundary

βs = ln(1 + r)

2 ln 2
(23)
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Figure 4. The quantitynX(n)(βs + βs)/βs as a function of the logarithm of the iterations for
the paper-folding Ising model withr = 2. The decay exponentη‖ = (βs + βs)/βs in (12) is
approached through log-periodic oscillations.

which is obtained by exchanging perturbed and unperturbed couplings, i.e. withr → r−1.
Thus for the paper-folding sequence, which is not inversion symmetric, the surface
magnetization exponents are different at the two boundaries.

Next we turn to calculate the decay exponent on the left boundary by the recursion
method. Nowη‖ is foundr-dependent and for allr it satisfies the relation

η‖ = 2βs

βs + βs

(24)

and a similar equation is true on the right surface withβs ↔ βs . To illustrate the relation
in (24) we show in figure 4 forr = 2 the quantitynX(n)(βs +βs)/βs , which tends to unity
with log-periodic oscillations, in accordance with (12). We can say that the surface scaling
law in (20) is again violated, like the period-doubling sequence.

5. Discussion

In this paper we have studied the surface magnetization and the surface correlation function
of diagonally layered Ising models on the(1, 1) surface. For different aperiodic distributions
of the diagonal couplings we have obtained exact results for the surface magnetization
exponent by the diagonal transfer matrix method, whereas the decay of surface correlations
was studied numerically by a recursion method based on the repeated use of the star–triangle
transformation. The results obtained are in accord with the relevance–irrelevance criterion
by Luck [22]. For the relevant Rudin–Shapiro model, first-order surface transition and
anomalous decay of critical surface correlations were observed. For marginal sequences
(Fredholm, period-doubling and paper-folding) non-universal surface critical behaviour was
found, and the corresponding surface magnetization exponents continuously varied with the
inhomogeneity parameterr.

The above observations remain valid, where the general triangular lattice Ising model
with couplingsKi and Ki is concerned. Then, besides the aperiodicity ratior, another
parameterKi/Ki enters the expressions. In this general case the criticality condition is also
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known analytically [49]:

lim
L→∞

1

L

L∑
i=1

logSi + 2Ki = 0 (25)

while both the surface magnetization and the surface correlations have to be calculated
numerically by the recursion method. Our results on the triangular lattice qualitatively
agree with that on the diagonal square lattice, and they satisfy the relevance–irrelevance
criterion in (1) for all sequences. For marginal sequences continuously varying critical
exponents were found, which depend on two parameters. Also the corresponding scaling
relations are satisfied: equation (20) for the Fredholm sequence and equation (24) for the
period-doubling and paper-folding sequences.

Finally, we come to the point of explaining the violation of surface scaling relation in
(20) for the period-doubling and paper-folding sequences. The observed scaling behaviour
in (24) is compatible with anisotropic scaling, when the correlation lengths parallel with
ξ‖ and perpendicular to the surfacesξ⊥ are diverging with different exponents, so that
ξ‖ ∼ ξz

⊥, wherez is the anisotropy exponent. According to anisotropic scaling [53] the
critical spin–spin correlation function on the left surface behaves as

gs(l, t) = b−2βs/νgs(l/b
z, b1/ν t) (26)

when lengths perpendicular to the surface are rescaled by a factor ofb > 1. At the critical
point t = 0 the decay exponent is given byη‖ = 2βs/νz, which corresponds to the relation
in (24), if

z = βs + βs. (27)

For the period-doubling sequence withβs = βs , η‖ = 1, as observed. We note that the
anisotropy exponentz has recently been analytically calculated for the corresponding Ising
quantum chains [54] in accordance with (27). Thus we can conclude that for marginally
aperiodic layered Ising models where the perturbation extends over the volume of the system,
the systems become essentially anisotropic at the critical point and the anisotropy exponent
can be expressed as the sum of the two surface magnetization exponents.
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Appendix

To prove equation (4) we start with the representation ofH in (3) in theµ, µ basis:

Hµ,µ = −
N−1∑
i=1

λiµiµi+1δµ,µ +
N∑

i=1

hiδ(µi + µi)
∏
j 6=i

δ(µj − µj). (A1)
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Then the matrix elements of the commutator [T 2, H] are given by

(T 2H − HT 2)µ,µ = −T 2
µ,µ

{ N∑
i=1

hi

cosh(K2i−1(µi − µi) + K2i (µi+1 + µi+1))

cosh(K2i−1(µi + µi) + K2i (µi+1 + µi+1))

×cosh(K2i−3(µi−1 + µi−1) + K2i−2(µi − µi))

cosh(K2i−3(µi−1 + µi−1) + K2i−2(µi + µi))

+
N−1∑
i=1

λiµiµi+1 − (µi ↔ µi)

}
. (A2)

Here in the surface termsK0 = K−1 = K2N = 0. The term in the first sum on the right-hand
side of (A2) can be rewritten using the identities sinh[a(µ ± µ)] = (µ ± µ)/2 sinh 2a and
tanh[a(µ ± µ)] = (µ ± µ)/2 tanh 2a as

[µi+1µi tanh 2K2i sinh 2K2i−1 cosh 2K2i−2 + µiµi−1 tanh 2K2i−3 sinh 2K2i−2 cosh 2K2i−1

+µi+1µi tanh 2K2i sinh 2K2i−1 cosh 2K2i−2

+µiµi−1 tanh 2K2i−3 sinh 2K2i−2 cosh 2K2i−1 − (µi ↔ µi)]/2

so that we obtain for the commutator

[T 2, H]µ,µ = −T 2
µ,µ

{ N−1∑
i=1

(µi+1µi − µi+1µi)

[
1

2
S2iS2i−1

(
hi

C2i−2

C2i

+ hi+1
C2i+1

C2i−1

)
− λi

]

+
N−1∑
i=1

(µi+1µi − µi+1µi)
1

2
S2iS2i−1

(
hi

C2i−2

C2i

− hi+1
C2i+1

C2i−1

) }
. (A3)

Then the commutator is zero if (4b) and (4c) are satisfied.
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4814 F Iglói and P Lajkó
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